#独家
贪心-京东NLP线上实习营第三期2022(SVIP)

2022-05-18 15,454
VIP 5折
下载不了?请联系网站客服提交链接错误!

#独家
贪心-京东NLP线上实习营第三期2022(SVIP)

2022-05-18 python 15,454
郑重承诺丨好课吧提供安全交易、信息保真!
¥ 299 钻石 (VIP 5折升级VIPVIP活动仅需49起
立即下载 升级会员
详情介绍

跟往期相比新增一个项目

贪心-京东NLP线上实习营课程介绍:

本课程是贪心学院和京东智联云强强联合打造的自然语言处理课程,课程周期为四个月,将带你完成4个京东落地应用项目:京东健康智能分诊项目、京东智能营销文本生成项目、京东同类商品搜索项目,京东智能对话系统项目.

京东健康智能分诊项目

这是一个经典的文本多分类项目。通过这个项目,学员可以扎实地掌握文本领域的相关技术如文本预处理、特征工程、词向量、分类模型、评价指标、模型部署等,并且通过完成一个完整的项目走完所有的必要流程。从技术的角度会涉及到tf-idf,word2vec,BERT向量,N-gram,FastText,TextCNN,SkipGram,CBOW,随机森林,XGBoost,Adagrad,Adam等技术和Flask,Docker,Jenkins等部署工具的使用。

京东智能营销文本生成项目

这是一个文本生成领域的问题,从技术层面上具有很大的挑战性。作为多模态的项目,学员会既可以拿到商品的描述文字,也可以拿到商品的图片数据,并利用这两部分信息让机器生成一个营销文案,也可以看作是多模态任务。在这个项目中,会涉及到Seq2Seq,Pointer-Generator Network,Beam Search的改进、多模态数据融合等相关技术。另外,很多挑战来自于模型本身的训练和调参,最终需要让模型给出一个合理的结果。

京东同类商品搜索项目

在这个项目中,我们首先根据商品各类属性来搭建商品的图谱(知识图谱),接着再使用图神经网络来得出每一件商品的embedding,并给予这个表示来寻找跟当前商品匹配的另外一个商品。所涉及到的技术包括知识图谱、图神经网络以及基于GAT的一些模型改造,是图神经网络领域一个非常有趣的应用。

京东智能对话系统项目

在这个项目中,将搭建一个智能客服系统,主要使用的框架为检索式对话系统和生成式对话系统。 在项目中,涉及到的技术包括倒排表、WAND、HNSW、L2R、BERT、Transformer等一系列技术。

课程目录:

┣━━01.视频 [26.5G]
┃ ┣━━就业指导 [1.2G]
┃ ┃ ┣━━就业指导1. [263.7M]
┃ ┃ ┣━━就业指导2. [470.1M]
┃ ┃ ┣━━项目在求职中的应用指导1. [308.4M]
┃ ┃ ┗━━项目在求职中的应用指导2. [200.6M]
┃ ┣━━week0 [1.6G]
┃ ┃ ┣━━开班典礼1. [225.1M]
┃ ┃ ┣━━开班典礼2. [160.8M]
┃ ┃ ┣━━开班典礼3. [607.2M]
┃ ┃ ┣━━开班典礼4. [226.1M]
┃ ┃ ┗━━开班典礼5. [436.7M]
┃ ┣━━week1 [3.9G]
┃ ┃ ┣━━20210130 Lecture [1.5G]
┃ ┃ ┃ ┣━━文本处理与特征工程1. [2.2M]
┃ ┃ ┃ ┣━━文本处理与特征工程2. [153.8M]
┃ ┃ ┃ ┣━━文本处理与特征工程3. [522.6M]
┃ ┃ ┃ ┣━━文本处理与特征工程4. [470M]
┃ ┃ ┃ ┗━━文本处理与特征工程5. [370.7M]
┃ ┃ ┗━━20210131 Lecture [2.5G]
┃ ┃ ┣━━20210131 Workshop1 [1.4G]
┃ ┃ ┃ ┣━━NLP工具的使用1. [495.9M]
┃ ┃ ┃ ┗━━NLP工具的使用2. [986.5M]
┃ ┃ ┣━━20210131 Workshop2 [558.4M]
┃ ┃ ┃ ┗━━如何阅读科研文章. [558.4M]
┃ ┃ ┗━━20210131 workshop3 [470M]
┃ ┃ ┗━━文本处理与特征工程. [470M]
┃ ┣━━week10 [2.1G]
┃ ┃ ┣━━20210424 Lecture [1.1G]
┃ ┃ ┃ ┣━━Learning to Rank1. [254.4M]
┃ ┃ ┃ ┣━━Learning to Rank2. [241.5M]
┃ ┃ ┃ ┣━━Learning to Rank3. [273.6M]
┃ ┃ ┃ ┗━━Learning to Rank4. [369.2M]
┃ ┃ ┣━━20210424 workshop [472M]
┃ ┃ ┃ ┗━━word moving distance paper 及代码. [472M]
┃ ┃ ┗━━20210509 Review [536.7M]
┃ ┃ ┗━━项目二任务3讲解. [536.7M]
┃ ┣━━week11 [2.6G]
┃ ┃ ┣━━20210515 Lecture11 [1.6G]
┃ ┃ ┃ ┣━━自注意力机制以及Transformer1. [315M]
┃ ┃ ┃ ┣━━自注意力机制以及Transformer2. [462.8M]
┃ ┃ ┃ ┣━━自注意力机制以及Transformer3. [487.7M]
┃ ┃ ┃ ┗━━自注意力机制以及Transformer4. [330M]
┃ ┃ ┣━━20210515 Workshop [477.7M]
┃ ┃ ┃ ┗━━Transformer 的实现及代码剖析. [477.7M]
┃ ┃ ┗━━20210516 Workshop [600.7M]
┃ ┃ ┣━━项目三的任务一1. [252M]
┃ ┃ ┗━━项目三的任务一2. [348.6M]
┃ ┣━━week12 [1.7G]
┃ ┃ ┣━━基于BERT和Transformer的闲聊引擎-1-. [406.2M]
┃ ┃ ┣━━基于BERT和Transformer的闲聊引擎-2-. [409.2M]
┃ ┃ ┣━━基于BERT和Transformer的闲聊引擎-3-. [346.2M]
┃ ┃ ┣━━基于BERT和Transformer的闲聊引擎-4-. [137.7M]
┃ ┃ ┗━━BERT的fine-tuning实例讲解-. [477.3M]
┃ ┣━━week13 [248.1M]
┃ ┃ ┣━━基于图的学习-1-. [90.4M]
┃ ┃ ┣━━基于图的学习-2-. [62.7M]
┃ ┃ ┗━━基于图的学习-3-. [95.1M]
┃ ┣━━week14 [883.1M]
┃ ┃ ┣━━代码课程一节. [204.9M]
┃ ┃ ┣━━基于图神经网络的Entity Linking-1. [79.6M]
┃ ┃ ┣━━基于图神经网络的Entity Linking-2. [208.7M]
┃ ┃ ┣━━基于图神经网络的Entity Linking-3. [135.3M]
┃ ┃ ┗━━项目任务讲解. [254.6M]
┃ ┣━━week15 [937.2M]
┃ ┃ ┣━━基于Bert-LSTM的命名实体识别-. [211.3M]
┃ ┃ ┣━━同类物品检索-. [391.8M]
┃ ┃ ┣━━GAT、GraphSage与Entity Linking-1-. [80.4M]
┃ ┃ ┣━━GAT、GraphSage与Entity Linking-2-. [90.1M]
┃ ┃ ┣━━GAT、GraphSage与Entity Linking-3-. [56M]
┃ ┃ ┗━━GAT、GraphSage与Entity Linking-4-. [107.5M]
┃ ┣━━week16 [633.5M]
┃ ┃ ┣━━同类检索项目. [187M]
┃ ┃ ┣━━图神经网络与其他应用. [75.2M]
┃ ┃ ┣━━Graphsage代码解读和实战1. [202.1M]
┃ ┃ ┗━━Graphsage代码解读和实战2. [169.3M]
┃ ┣━━week2 [1.1G]
┃ ┃ ┣━━20210206 Lecture [660.6M]
┃ ┃ ┃ ┣━━基于统计学习的分类方法1. [130.2M]
┃ ┃ ┃ ┣━━基于统计学习的分类方法2. [133.6M]
┃ ┃ ┃ ┣━━基于统计学习的分类方法3. [127.1M]
┃ ┃ ┃ ┣━━基于统计学习的分类方法4. [118M]
┃ ┃ ┃ ┗━━基于统计学习的分类方法5. [151.7M]
┃ ┃ ┗━━20210221 Lecture [433.2M]
┃ ┃ ┣━━处理样本的不平衡1. [139.8M]
┃ ┃ ┣━━Paperskipgram讲解1. [57.2M]
┃ ┃ ┣━━Paperskipgram讲解2. [109M]
┃ ┃ ┗━━Paperskipgram讲解3. [127.2M]
┃ ┣━━week3 [609.7M]
┃ ┃ ┣━━20210227 Lecture3 [237.4M]
┃ ┃ ┃ ┣━━基于深度 学习的分类方法1. [89.8M]
┃ ┃ ┃ ┣━━基于深度 学习的分类方法2. [48.9M]
┃ ┃ ┃ ┣━━基于深度学习的分类方法3. [38.8M]
┃ ┃ ┃ ┗━━基于深度学习的分类方法4. [59.9M]
┃ ┃ ┣━━20210228 Workshop1 [128.9M]
┃ ┃ ┃ ┣━━Pytorch的使用1. [122.3M]
┃ ┃ ┃ ┗━━Pytorch的使用2. [6.6M]
┃ ┃ ┗━━20210228 Workshop2 [243.4M]
┃ ┃ ┣━━项目作业中期讲解1. [71.3M]
┃ ┃ ┗━━项目作业中期讲解2. [172.2M]
┃ ┣━━week4 [1.3G]
┃ ┃ ┣━━20210306 Lecture4 [470M]
┃ ┃ ┃ ┣━━CNN与工业界模型部署1. [109.3M]
┃ ┃ ┃ ┣━━CNN与工业界模型部署2. [69.2M]
┃ ┃ ┃ ┣━━CNN与工业界模型部署3. [117.4M]
┃ ┃ ┃ ┗━━CNN与工业界模型部署4. [174.1M]
┃ ┃ ┣━━20210307 Workshop [329.2M]
┃ ┃ ┃ ┣━━模型的部署1. [152.4M]
┃ ┃ ┃ ┗━━模型的部署2. [176.8M]
┃ ┃ ┣━━20210307 Workshop1 [368.1M]
┃ ┃ ┃ ┣━━ResNet讲解1. [333.9M]
┃ ┃ ┃ ┗━━ResNet讲解2. [34.2M]
┃ ┃ ┗━━20210307 Workshop2 [200.9M]
┃ ┃ ┗━━第三次项目讲解. [200.9M]
┃ ┣━━week5 [685.8M]
┃ ┃ ┣━━20210313 Lecture5 [313.6M]
┃ ┃ ┃ ┣━━递归神经网络RNN与BPTT算法1. [65.3M]
┃ ┃ ┃ ┣━━递归神经网络RNN与BPTT算法2. [51.3M]
┃ ┃ ┃ ┣━━递归神经网络RNN与BPTT算法3. [132.4M]
┃ ┃ ┃ ┗━━递归神经网络RNN与BPTT算法4. [64.6M]
┃ ┃ ┗━━20210314 Workshop [372.2M]
┃ ┃ ┣━━实现基于LSTM的情感分类1. [131.2M]
┃ ┃ ┣━━实现基于LSTM的情感分类2. [79M]
┃ ┃ ┗━━实现基于LSTM的情感分类3. [162M]
┃ ┣━━week6 [885.1M]
┃ ┃ ┣━━20210320 Lecture6 [280.5M]
┃ ┃ ┃ ┣━━Seq2Seq模型与营销⽂本⽣成1. [54.9M]
┃ ┃ ┃ ┣━━Seq2Seq模型与营销⽂本⽣成2. [91.5M]
┃ ┃ ┃ ┗━━Seq2Seq模型与营销⽂本⽣成3. [134.1M]
┃ ┃ ┣━━20210321 Workshop1 [330.5M]
┃ ┃ ┃ ┣━━关于seq2seq的代码课1. [115.1M]
┃ ┃ ┃ ┣━━关于seq2seq的代码课2. [81.1M]
┃ ┃ ┃ ┗━━关于seq2seq的代码课3. [134.2M]
┃ ┃ ┗━━20210321 Workshop2 [274.1M]
┃ ┃ ┣━━项目二讲解1. [102.1M]
┃ ┃ ┗━━项目二讲解2. [172M]
┃ ┣━━week7 [1.5G]
┃ ┃ ┣━━20210327 Lecture7 [605.2M]
┃ ┃ ┃ ┣━━PointerGenerator Network和多模态识. [115.3M]
┃ ┃ ┃ ┣━━PointerGenerator Network和多模态识2. [204.2M]
┃ ┃ ┃ ┣━━PointerGenerator Network和多模态识3. [149.7M]
┃ ┃ ┃ ┗━━PointerGenerator Network和多模态识4. [135.9M]
┃ ┃ ┣━━20210327 Workshop1 [177.6M]
┃ ┃ ┃ ┗━━多模态的实现. [177.6M]
┃ ┃ ┣━━20210328 Workshop2 [427.9M]
┃ ┃ ┃ ┣━━代码实现 of PGN1. [286.8M]
┃ ┃ ┃ ┗━━代码实现 of PGN2. [141M]
┃ ┃ ┗━━20210328 Workshop3 [285.6M]
┃ ┃ ┣━━Project2项目教学1. [172M]
┃ ┃ ┗━━Project2项目教学2. [113.6M]
┃ ┣━━week8 [1.7G]
┃ ┃ ┣━━20210410 Lecture8 [693.1M]
┃ ┃ ┃ ┣━━对话系统技术概览以及深度学习训练技巧1. [103M]
┃ ┃ ┃ ┣━━对话系统技术概览以及深度学习训练技巧2. [161.8M]
┃ ┃ ┃ ┣━━对话系统技术概览以及深度学习训练技巧3. [64.7M]
┃ ┃ ┃ ┣━━对话系统技术概览以及深度学习训练技巧4. [175.9M]
┃ ┃ ┃ ┗━━对话系统技术概览以及深度学习训练技巧5. [187.7M]
┃ ┃ ┣━━20210411 Workshop1 [512.1M]
┃ ┃ ┃ ┣━━基于BM25,tfidf和SIF的检索系统实现1. [98.8M]
┃ ┃ ┃ ┗━━基于BM25,tfidf和SIF的检索系统实现2. [413.3M]
┃ ┃ ┗━━20210411 Workshop2 [547.8M]
┃ ┃ ┣━━项目二任务二讲解及任务三布置1. [359M]
┃ ┃ ┗━━项目二任务二讲解及任务三布置2. [188.8M]
┃ ┗━━week9 [2.9G]
┃ ┣━━20210417 Lecture9 [2.1G]
┃ ┃ ┣━━多轮对话管理1. [517.8M]
┃ ┃ ┣━━多轮对话管理2. [317.6M]
┃ ┃ ┣━━多轮对话管理3. [385.8M]
┃ ┃ ┣━━多轮对话管理4. [432.4M]
┃ ┃ ┗━━多轮对话管理5. [509.5M]
┃ ┣━━20210417 workshop1 [384.4M]
┃ ┃ ┗━━HNSW的代码实现. [384.4M]
┃ ┗━━20210418 workshop2 [467.6M]
┃ ┗━━多模态MMPG论文. [467.6M]
┣━━00.资料.zip [2.5G]
资源下载此资源下载价格为299钻石,请先
客服QQ:1415374178
常见问题

相关文章

评论
暂无评论
  • 0 +

    访问总数

  • 0 +

    会员总数

  • 0 +

    资源总数

  • 0 +

    今日发布

  • 0 +

    本周发布

  • 0 +

    稳定运行(天)

你的前景,远超我们想象